
Data Mining and Knowledge Discovery
https://doi.org/10.1007/s10618-019-00646-y

Wrangling Messy CSV Files by Detecting Row and Type
Patterns

G.J.J. van den Burg · A. Nazábal · C. Sutton

Received: 26 November 2018 / Accepted: 19 July 2019

This is a post-peer-review, pre-copyedit version of an article published in
Data Mining and Knowledge Discovery. The final authenticated version is
available online at: http://dx.doi.org/10.1007/s10618-019-00646-y.

Abstract Data scientists spend the majority of their time on preparing data
for analysis. One of the first steps in this preparation phase is to load the
data from the raw storage format. Comma-separated value (CSV) files are a
popular format for tabular data due to their simplicity and ostensible ease of
use. However, formatting standards for CSV files are not followed consistently,
so each file requires manual inspection and potentially repair before the data
can be loaded, an enormous waste of human effort for a task that should be
one of the simplest parts of data science. The first and most essential step in
retrieving data from CSV files is deciding on the dialect of the file, such as
the cell delimiter and quote character. Existing dialect detection approaches
are few and non-robust. In this paper, we propose a dialect detection method
based on a novel measure of data consistency of parsed data files. Our method
achieves 97% overall accuracy on a large corpus of real-world CSV files and
improves the accuracy on messy CSV files by almost 22% compared to existing
approaches, including those in the Python standard library. Our measure of
data consistency is not specific to the data parsing problem, and has potential
for more general applicability.

Keywords Data Wrangling · Data Parsing · Comma Separated Values

G.J.J. van den Burg
The Alan Turing Institute, London, UK.
E-mail: gvandenburg@turing.ac.uk
ORCID: 0000-0001-5439-6248

A. Nazábal
The Alan Turing Institute, London, UK.
E-mail: anazabal@turing.ac.uk
ORCID: 0000-0002-9414-7139

C. Sutton
Google, Inc. Mountain View, CA, USA.
E-mail: charlessutton@google.com
Other affiliations: The Alan Turing Institute, London, UK,
School of Informatics, The University of Edinburgh, UK.
ORCID: 0000-0002-0041-3820

https://doi.org/10.1007/s10618-019-00646-y
http://dx.doi.org/10.1007/s10618-019-00646-y

2 G.J.J. van den Burg, A. Nazábal, C. Sutton

CSV is a textbook example of how not to design a textual file format.

— The Art of Unix Programming, Raymond (2003).

1 Introduction

The goal of data science is to extract valuable knowledge from data through
the use of machine learning and statistical analysis. Increasingly however, it
has become clear that in reality data scientists spent up to 80% of their time
on importing, organizing, cleaning, and wrangling their data in preparation
for the analysis (Dasu and Johnson, 2003; Lohr, 2014; Kandel et al., 2011;
Crowdflower, 2016; Kaggle, 2017). Collectively this represents an enormous
amount of time, money, and talent. As the role of data science is expected to
only increase in the future, it is important that the mundane tasks of data
wrangling are automated as much as possible. One reason that data scientists
spent so much time on data wrangling issues is due to what has been called
the double Anna Karenina principle of data wrangling: “every messy dataset
is messy in its own way, and every clean dataset is also clean in its own way”
(Sutton et al., 2018).1 Because of the wide variety of data quality issues and
data formats that exist (“messy in its own way”), it is difficult to re-use data
wrangling scripts and tools, perhaps explaining the manual effort required in
data wrangling.

This problem can be observed even in the earliest and what might be
considered the simplest stages of the data wrangling process, that of loading
and parsing the data in the first place. In this work, we focus on comma-
separated value (CSV) files, which despite their deceptively simple nature,
pose a rich source of formatting variability that frustrates data parsing.2 CSV
files are ubiquitous as a format for sharing tabular data on the web: government
data repositories often present their data in CSV format,3 and based on our
data collection we conservatively estimate that GitHub.com alone contains
over 19 million CSV files. Advantages of CSV files include their simplicity,
portability, and potential to be tracked in version control.

However, despite some standardization effort (RFC 4180; Shafranovich,
2005) a wide variety of subtly incompatible variations of CSV files exist, in-
cluding the 34 different formats among the CSV files in our data. For example,
we observe that values can be separated by commas, semicolons, spaces, tabs,
or any other character, and can be surrounded by quotation marks or apos-
trophes to guard against delimiter collision or for no reason at all. Figure 1
illustrates a few of the problems that real-world CSV files exhibit and is based
on files encountered in this study. Figure 1(a) illustrates a normal CSV file that
uses comma as the delimiter and has both empty and quoted cells. Figure 1(b)

1 This is related to the principle of the fragility of good things (Arnold, 2003).
2 While we use the term CSV file throughout, our discussion and our proposed method

applies directly to tab-separated value (TSV) and delimiter -separated value (DSV) files, as
well as .dat and .txt files that are effectively CSV files but use a different file extension.

3 Mitlöhner et al. (2016) survey 200,000 CSV files from open government data portals.

Wrangling Messy CSV Files by Detecting Row and Type Patterns 3

functions,,:stop,"a[u:stop,i]"

functions,,:stop,a[u:stop:b]

hotshot,,:lineno,"ncalls tottime"

httplib,,:port,host:port

imaplib,,:MM,"DD-MM-YY"

(a)

~437~^~a~^~Approve~^~3~^~13482~

~688~^~b~^~Jellyfish~^~1~^~12880~

~498~^~c~^~Color~^~2~^~13629~

~992~^~a~^~Wind~^~8~^~12392~

~246~^~c~^~Coat~^~0~^~13764~

(b)

"www.google.com,search,02/02/15"

"www.yahoo.com,search,02/02/15"

"www.bing.com,search,03/02/15"

"altavista.com,search,03/02/15"

"askjeeves.com,search,03/06/15"

(c)

#Release 0.4

#Copyright (c) 2015 SomeCompany.

#

Z10,,,HFJ,,,,,,

B12,,IZOY,AB_K9Z_DD_18,RED,,12,,,

(d)

Mango; £365,14; £1692,64

Apple; £2568,62; £1183,78

Lemon; £51,65; £685,67

Orange; £1760,75; £128,14

Maple; £880,86; £323,43

(e)

this, is, a file,"

with a number of issues

that shows ""double quoting""

\"escaping\" and multi-line cells

",\, and has only one row!

(f)

Fig. 1 Illustration of some of the variations of real-world CSV files. See the main text for
a description of each of the files.

shows a variation that uses the caret symbol as delimiter and the tilde as quo-
tation mark. Next, Figure 1(c) illustrates an ambiguous CSV file: each row is
surrounded with quotation marks, implying that the correct interpretation is a
single column of strings. However, if the quotation marks are stripped a table
appears where values are separated by the comma. Figure 1(d) illustrates a file
with comment lines, which are not supported by the CSV standard. Figure 1(e)
is adapted from Döhmen et al. (2017) and illustrates that different choices for
the delimiter can result in the same number of columns (the semicolon, space,
comma, and pound sign all yield three columns). Finally, Figure 1(f) illustrates
a number of issues simultaneously: quote escaping with an escape character
and using double quotes, delimiter escaping, and multi-line cells.

It may surprise the reader that we seem to claim that CSV parsing is
an open problem. However, as Figure 1 illustrates, there is a remakarble di-
versity of formatting parameters in CSV files, including different delimiters,
quoting characters, and so on — we call these parameters the dialect of a file.
Automatically detecting the dialect of a CSV file is a problem that has re-
ceived little attention. Indeed, although almost every programming language
provides functionality for parsing CSV files, very few are robust against the
format variation of real-world files. To the best of our knowledge, Python is
the only programming language whose standard library supports automatic
dialect detection; however, our experiments show that this method fails to
detect the dialect in 36% of non-standard CSV files, and no other methods
exist that achieve higher accuracy. This means that in practice almost ev-
ery file requires manual inspection before the data can be loaded, because it
may contain a non-standard format and could therefore be parsed incorrectly.

4 G.J.J. van den Burg, A. Nazábal, C. Sutton

While dialect detection is generally easy for a human analyst, it is nontrivial
to do so automatically because every dialect will yield some table (even if it
is incorrect) and it is not straightforward to define a function that identifies
the correct dialect reliably.

In this paper we present a method for automatically detecting the dialect
of a CSV file through a novel data consistency measure. With this measure we
can search the space of potential dialects for one that yields the most consistent
parsed data. By consistency here we consider primarily (a) the shape of the
parsed data, which we capture using an abstraction called row patterns, and
(b) the data type of the cells, such as integers or strings. This aims to capture
how a human analyst might identify the dialect: searching for a character that
results in regular row patterns and using knowledge of what real data “looks
like”. This data consistency measure is independent of the CSV problem, and
may be more broadly applicable as a way to quantify whether a data table has
a “natural shape” in other data wrangling and data cleaning problems.

The paper is structured as follows. In Section 2 we present an overview of
related work on both table detection and CSV parsing. Next, Section 3 gives
a formal description of CSV dialect detection. Our proposed data consistency
measure is presented in Section 4. Results of a thorough comparison of our
method with the few existing alternatives are presented in Section 5. Section 6
concludes the paper.

2 Related Work

Only very few publications have paid any attention to the problem of CSV
parsing. Mitlöhner et al. (2016) explore a large collection of CSV files from
open data platforms of various governments and find significant variability in
the structure and format of CSV files, but do not present a novel CSV parser.
In recent work, Döhmen et al. (2017) present a so-called “multi-hypothesis”
parser for messy CSV files that constructs a tree of parsing configurations
and assigns a score to each based on heuristic metrics. The authors evaluate
the parser on 64 files with known ground truth from the UK open government
data portal. Our preliminary analysis showed that this parser is not very robust
against many variations of CSV files, possibly due to the small evaluation set
used in the paper. To address this issue we compare our proposed solution to
this method on a corpus of thousands of CSV files with ground truth.

A topic closely related to CSV parsing and dialect detection is extracting
tables from free text (e.g. emails, text files, etc.). Work on this topic includes
that of Ng et al. (1999), who locate tables based on various surface features.
Later work by Pinto et al. (2003) applies a similar strategy but uses conditional
random fields and expands the problem by identifying the semantic role of each
row in the table (i.e. header, data row, etc.). More recent work includes that
of Eberius et al. (2013) and Koci et al. (2016) on the DeExcelerator program
for extracting and annotating the semantic role of tables in Excel files. CSV
parsing differs from these approaches because CSV files have more structure

Wrangling Messy CSV Files by Detecting Row and Type Patterns 5

than free text tables, but are less well-defined than Excel files. CSV files use
a specific character to delimit cells and can employ the quoting mechanism to
let cells span multiple lines and guard against delimiter collision. This explains
why these methods cannot be readily applied to CSV parsing.

More broadly, there is work on data wrangling that relates to importing
data. Fisher et al. (2008) present the PADS system for retrieving structured
data from ad-hoc sources such as log files. However, the authors explicitly
mention that CSV files are not a source of ad-hoc data. Moreover, the PADS
system may not be robust against features of real-world CSV files such as
comment sections and line breaks in quoted cells. Well-known work on data
wrangling that aims to reduce the time that human analysts spent on this
task is that of Kandel et al. (2011) with the Wrangler system. In follow-up
work, Guo et al. (2011) provide a method for automatically suggesting data
transformations to the analyst and introduce a “table suitability metric” that
quantifies how well a table corresponds to the relational format, also known
as tidy data (Wickham, 2014). Although CSV files are not considered in these
works, we evaluate the table suitability metric from Guo et al. (2011) for CSV
dialect detection.

Finally, it is worth mentioning efforts that aim to solve the problem of CSV
parsing by proposing extensions or variations on the CSV format. A study on
the use and future of CSV files on the web was performed by a working group
of the World Wide Web Consortium (Tennison, 2016). The group proposed
to provide metadata about a CSV file through an accompanying JSON4 de-
scription file (Tennison and Kellogg, 2015; Frictionless Data, 2017). While this
recommendation could certainly address some of the issues of CSV parsing,
it requires users to specify and maintain a secondary file besides the CSV file
itself. Moreover, it does not address the issues of the many existing messy
CSV files. Alternatives such as the CSVY format (Rovegno and Fenner, 2015)
propose to add a YAML5 header with metadata. While this does combine the
metadata and tabular data in a single file, it requires the user to adopt special
tools, which may limit the adoption of these formats.

3 Problem Statement

We start by reiterating commonly used definitions for tabular data. Consider
attributes A` for ` = 1, . . . , L, each with a corresponding domain V` (Codd,
1970). The domain V` is the set of allowed values for the attribute, e.g. the set
of all floating point numbers. A tuple ti is an ordered sequence of values from
the domains, i.e.

ti ∈ V1 × V2 × · · · × VL. (1)

Next, we define a table as an array of tuples, i.e. T = [t1, . . . , tn]. Note that a
table is more appropriate to describe the rows in a CSV file than a relation,

4 JavaScript Object Notation (Crockford, 2006).
5 YAML Ain’t Markup Language (Evans, 2001).

6 G.J.J. van den Burg, A. Nazábal, C. Sutton

because a relation is a set of tuples whereas a table allows for duplicate tuples
and captures the order of tuples.

Unfortunately the above definitions are insufficient to capture all real-world
uses of CSV files because files can contain multiple tables (e.g. when exported
from spreadsheets). Thus a CSV file can contain tables T1, . . . ,TS where the
attributes and data domains of the table Ts depend on s. This generalization
also allows for headers and comment lines by considering these to be separate
tables in the CSV file. In the next paragraph we focus on files with a single table
to simplify the presentation, but our description generalizes straightforwardly
to files with multiple tables.

A table T is transformed to a CSV file x by a formatter. The formatter f
can be decomposed into two components as f = f2 ◦ f1. The first component
f1 takes the table T = [t1, . . . , tn], with data domains V`, and outputs a table
C = [c1, . . . , cn] where the domain for all attributes is that of strings.6 This
function thus includes the conversion of numeric values to their string repre-
sentation and is therefore not perfectly invertible in general. Subsequently, the
second component f2 of the formatter converts the string table C to a CSV
file x. This function takes parameters such as the delimiter and the quote
character that affect how the string tuples ci in C are converted to the lines
of the CSV file. These parameters are typically referred to as the dialect of
the CSV file, and we denote these by θ. We assume that θ contains all of
the configuration parameters required by the formatter, so that given θ and
a table T, the output of the formatter is deterministic. Therefore, we denote
the formatter by a function f2(f1(T),θ).

In this work we consider a dialect of three components: the delimiter (θd),
the quote character (θq), and the escape character (θe). The delimiter is used
to separate the elements of the string tuples ci, the quote character surrounds
certain elements, and the escape character can be used to signal that certain
delimiter or quote characters should not be interpreted. Each of these com-
ponents can be absent in a CSV file, in which case we denote them by ε (the
empty string). Our approach could easily be extended to include other format-
ting parameters, such as the presence of a comment character or the use of a
specific line terminator. Moreover, some formatters contain additional param-
eters, such as those that control the rules for when a cell should be quoted or
not, but we do not consider these in our dialect detection approach as they
are not needed when parsing a file. We can now present dialect detection as
the inverse problem of recovering the dialect θ from an observed CSV file.

Definition 1 (Dialect Detection) Let x be a CSV file created by a for-
matter f = f2 ◦ f1 using a dialect θ = (θd, θq, θe) for f2, that contains tables
T1, . . . ,TS with S ≥ 1. Then dialect detection is the problem of identifying θ
from x.

6 Formally, f1 decomposes to a set of functions for each data domain, g` : V` → Σ∗,
where Σ∗ is the set of all strings, i.e. the Kleene closure of an alphabet Σ (Kleene, 1956).
This process is also known as type casting.

Wrangling Messy CSV Files by Detecting Row and Type Patterns 7

In general, this problem is difficult to solve automatically. First, both f1
and f2 are typically unknown, which means that x is the only information
available. Second, as Figure 1(e) illustrates, detecting the correct dialect re-
quires knowledge of what the data represents to properly disambiguate poten-
tial dialects. This is easy for a human familiar with representations of data,
but, informally, it is difficult for a computer since the CSV file is simply a
sequence of characters and there is no automatic way to verify that a given
dialect correctly parses a CSV file (every dialect yields some table). Third, any
file with a somewhat regular pattern of symbols can be claimed to be a CSV
file, even if its contents are not human-readable. This means that theoretically
the search space of potential dialects is of the order |X |3 where X is the set of
unique characters in the file.

4 A Consistency Measure for Dialect Detection

Given the problem of dialect detection defined above, the goal is to find a way
to identify whether a given dialect is correct. We propose that a CSV file is
parsed with a correct dialect rather than an incorrect one when the resulting
tuples appear more consistent. Our notion of consistency is modelled on the
approach a human would take to determine the correct dialect, i.e. searching
for a dialect that would result in rows of similar length and using knowledge of
what real data “looks like”. Hence, we develop a consistency measure for dialect
detection based on two components: a measure for row length consistency
called the pattern score, and a measure for type consistency called the type
score.

In the following, we define both of these components and their combination
in the complete data consistency measure. Furthermore, we explain how to
construct and prune the search space of potential dialects, address the issue of
tie breaking among equally consistent dialects, and present the computational
complexity of our method. We refer to Figure 2 as a running example that
illustrates the different components of the data consistency measure.

4.1 Pattern Score

The pattern score is the main driver of the data consistency measure. It is
based on the observation that because CSV files generally contain data tables,
we expect to find consistent row lengths when we parse the file with the correct
dialect. The number of cells in each parsed row, and the consistency of that
number throughout the file, is therefore indicative of the correctness of the
dialect. Recall that the CSV file x is created from the string table C using
the dialect θ through x = f2(C,θ). Let Ĉ denote the parsing result when
the CSV file is parsed using dialect θ̂ and denote the elements of Ĉ (i.e. the
tuples in the table) by ĉi. Furthermore, let ĉi,j be the elements of tuple ĉi for
j = 1, . . . , Li and i = 1, . . . , n.

8 G.J.J. van den Burg, A. Nazábal, C. Sutton

7,5; Mon, Jan 12;6,40

100; Fri, Mar 21;8,23

8,2; Thu, Sep 17;2,71

538,0;;7,26

"N/A"; Wed, Oct 4;6,93

7 5; Mon Jan 12;6 40

100; Fri Mar 21;8 23

8 2; Thu Sep 17;2 71

538 0;;7 26

"N/A"; Wed Oct 4;6 93

7,5 Mon, Jan 12 6,40

100 Fri, Mar 21 8,23

8,2 Thu, Sep 17 2,71

538,0 7,26

"N/A" Wed, Oct 4 6,93

7,5 Mon, Jan 12 6,40

100 Fri, Mar 21 8,23

8,2 Thu, Sep 17 2,71

538,0 7,26

N/A Wed, Oct 4 6,93

θ̂1 = (,, ε, ε) θ̂2 = (;, ε, ε) θ̂3 = (;, ", ε)

Patterns:

CDCDCDC

CDCDC

CDCDCDC

CDCDC

CDCDC

Patterns:

CDCDC

CDCDC

CDCDC

CDCDC

CDCDC

Patterns:

CDCDC

CDCDC

CDCDC

CDCDC

CDCDC

Types:

1 0 0 1

0 0 1

1 0 0 1

1 0 1

0 0 1

Types:

1 0 1

1 0 1

1 0 1

1 1 1

0 0 1

Types:

1 0 1

1 0 1

1 0 1

1 1 1

1 0 1

P (x, θ̂1) =
1
2

(
2 · 3

3+1
+ 3 · 2

2+1

)
= 7

4 T (x, θ̂1) =
8
17

P (x, θ̂2) = 5 · 2
2+1

= 10
3 T (x, θ̂2) =

10
15

P (x, θ̂2) = 5 · 2
2+1

= 10
3 T (x, θ̂3) =

11
15

Q(x, θ̂1) = 0.8235 Q(x, θ̂2) = 2.2222 Q(x, θ̂3) = 2.4444

Fig. 2 Illustration of the data consistency measure for different dialects on a constructed
example. The figure shows how different dialects can result in different row patterns and
pattern scores, as well as different type scores. The difference between θ̂2 and θ̂3 is due to
the fact that the string N/A belongs to a known type, but the string "N/A" does not.

We define a row pattern as a sequence of characters from the alphabet
{C, D, Q} where C denotes a cell, D denotes the delimiter, and Q denotes a quote
character. Each tuple ĉi has a corresponding row pattern that is constructed
iteratively by adding the letter C to the row pattern for every element ĉi,j
in ĉi and adding the letter D after each cell except the last one (D reflects
the delimiter).7 A symmetrically quoted cell (e.g. "a") also adds C to the row
pattern as this is a regular cell, but for an asymmetrically quoted cell (e.g. a"b)
the sequence CQC is added. This can happen when the quote character of a
dialect occurs an odd number of times in the file and can be an indication
that a potential dialect is incorrect. Thus the row pattern can be seen as a
“signature” of the row: it reflects the order of cells and delimiters as well as
the presence of spurious quote characters. Refer to Figure 2 for examples of
row patterns constructed from parsing results for different dialects.

Note that a CSV file with only one table will have a single unique row
pattern if the correct dialect is used for parsing the file. We denote by P the
set of unique row patterns, with K = |P|. Let Nk be the number of tuples ĉi
in Ĉ that yield row pattern p̂k ∈ P. Furthermore, for each row pattern p̂k ∈ P
we compute its lengthMk as the number of delimiters D in p̂k. Then, we define
the pattern score as

P (x, θ̂) =
1

K

K∑
k=1

Nk
Mk

Mk + 1
. (2)

7 This is a slight simplification of how the row patterns are constructed. For the full

Wrangling Messy CSV Files by Detecting Row and Type Patterns 9

The pattern score is designed to favor row patterns that occur often and those
that are long, while also favoring a smaller number of unique row patterns.
When the correct dialect is chosen we expect to observe fewer unique row
patterns that occur frequently in the file. Additionally, the ratio of the pat-
tern length favors longer row patterns, which indicate a regular occurrence of
delimiters and cells, over shorter patterns, which may indicate an incorrectly
chosen delimiter. Notice how in Figure 2 the correct dialect yields a single row
pattern throughout the file.

While this function works well for CSV files that contain tables, it gives
a value of 0 when the entire file is a single column of data. To handle these
files in practice, we replace the numerator by max{α,Mk} where α is a small
constant. This constant must be chosen such that single-column CSV files are
detected correctly, while avoiding false positive results that assume regular
CSV files are a single column of messy data. It was found empirically that
α = 10−3 achieves this goal well.

4.2 Type Score

While the pattern score is the main component of the data consistency mea-
sure, Figure 2 shows that the type score is essential to obtaining state-of-the-
art results. The goal of the type score is to act as a proxy for understanding
what the cells of the file represent, thus capturing whether a dialect yields cells
that “look like real data”. To do this, the type score measures the proportion
of cells in the parsed file that can be matched to a known data type.

The type score is based on a function h that takes a string as input and
returns 1 if the string holds data from a known data type and 0 otherwise. The
following types are considered known data types: empty strings, URLs, email
addresses, numbers in various formats, times, percentages, currency values,
alphanumeric strings, NaN values, dates, and combined date and time (see
Appendix A for detailed descriptions). The function h is implemented using
regular expression tests for each of these types and the tests are designed to be
mutually exclusive. Then, the type score is defined as the proportion of cells
in the parsing result with a known data type, that is,

T (x, θ̂) =
1

Z

n∑
i=1

Li∑
j=1

h(ĉi,j), (3)

where Z =
∑
i Li is the total number of cells in Ĉ. Note that in Figure 2 the

type score allows differentiating between two potential dialects that receive
the same pattern score.

description see Appendix B.2.

10 G.J.J. van den Burg, A. Nazábal, C. Sutton

4.3 Potential Dialects

We optimize the data consistency measure by computing it for each dialect in
a set of potential dialects. As mentioned in Section 3 the theoretical number
of potential dialects for a CSV file x with X unique characters is |X |3. It
is important to prune this search space to reduce the computation time and
to increase the accuracy of our method. Let D, Q, and E denote the set of
potential delimiters, quote characters, and escape characters, respectively. The
set of potential dialects Θx is the product set of these three sets, pruned in two
different ways to reduce its size (described below). As a preprocessing step to
constructing Θx all URLs in the file are removed to eliminate characters that
only occur in URLs (e.g. : and /).

It is unnecessary to consider all characters in X as potential delimiters
D, since letters and numbers are not typically used as delimiters. The Uni-
code category of a character can be used to apply this reasoning in a way
that is portable to files in different languages and encodings (The Unicode
Consortium, 2018). All characters whose major Unicode category is Letter or
Number are not considered as delimiters. Furthermore, open and close brackets
(categories Ps and Pe) as well as control characters (categories Cc and Co) are
not considered as delimiters. For the latter category we make an exception
for the Tab character (\t). Finally, we eliminate four characters from D that
are extremely unlikely to be delimiters, i.e. {., /, ', "}, and we add the empty
string ε to detect single-column CSV files.

The set of quote characters Q is

Q = ({', ", ~} ∩ X) ∪ {ε}. (4)

This means that we consider the apostrophe, quotation mark, and tilde as
quote character if they occur at least once in the file, and add the empty string
ε for files without quote characters. For the set of escape characters, E , we again
use the Unicode category and allow characters from the “Punctuation, Other”
(Po) category, but remove some common characters that fall in this category,
and add the empty string, thus

E = ({x ∈ X : cat(x) = Po} ∪ {ε}) \ {!, ?, ", ', ., ,, ;, :,%, *, &, #}, (5)

with cat(x) returning the Unicode category of a character x. The sets of
blocked delimiters, included quote characters, and removed escape characters
are considered features of our method and an implementation in software may
choose different sets or allow the user to modify them.

To further prune the set of potential dialects Θx = D ×Q× E we use two
strategies. First, dialects where the escape character θe never precedes either
the delimiter θd or the quote character θq are removed from consideration.
Second, dialects where the delimiter θd always falls inside quoted segments do
not need to be considered as these are equivalent to the dialect with the same
θq and θe where the delimiter is the empty string. The effect of this careful
construction of Θx is that empirically we find that |Θx| ≈ 0.2 |X | on average,
as opposed to the theoretical |X |3.

Wrangling Messy CSV Files by Detecting Row and Type Patterns 11

4.4 Data Consistency Measure

The complete data consistency measure for the CSV file x and a potential
dialect θ̂ is defined as the product of the pattern score and the type score

Q(x, θ̂) = P (x, θ̂) · T (x, θ̂), (6)

and the dialect is selected through search over the set of potential dialects Θx

θ∗ = argmax
θ̂∈Θx

Q(x, θ̂). (7)

There are two minor caveats to this search procedure, both caused by the fact
that the type score is necessarily imperfect. Because it is not feasible to capture
all possible types of data in the type score, the situation can arise where the
type score returns a value of 0 for a potential dialect. When this happens for
two dialects, it is desirable to use the pattern score to decide between the two.
Thus, in our implementation we use max{β, T (x, θ̂)} instead, with β = 10−10

a small constant.
Additionally, the data consistency measure can be the same for multiple

dialects. In some cases these ties can be broken reliably based on the parsing
result for each dialect. For example, if the same consistency score is obtained
for two dialects that only differ in the quote character and where the quote
character is ε for one dialect, then this tie can be broken by checking if the
parsing result is the same for both dialects. If it is, then the quote character
has no effect and the correct dialect is the one where the quote character is ε.
Similar tie-breaking rules can be formulated for the delimiter and the escape
character. If it is not possible to break the tie reliably, our method returns
no result. In a practical setting, this is preferred over returning an incorrect
result.

Finally, the computational complexity of our method can be quantified
as follows. Constructing the set of potential dialects requires the construc-
tion of D, Q, and E , each of which can be done in O(|X |) time. The two
pruning strategies for removing unnecessary escape characters and delimiters
have O(|x| |D| |Q|) and O(|x| |D| |Q| |E|) complexity, respectively. This yields
an O(|X | + |x| |D| |Q| |E|) = O(|x| |X |3) worst-case complexity for construct-
ing Θx. Computing the data consistency measure for each θ̂ ∈ Θx requires
the construction of the row patterns and the computation of the pattern score
(both O(|x|) operations) as well the computation of the type score, which re-
quires parsing the file and checking the data type for each cell, an O(|x| |T |)
operation with T the set of data types considered. Combining the above yields
a worst-case complexity of O(|x| |X |3 + |x| |T | |Θx|) = O(|x| |T | |X |3) for our
method. However, as mentioned above |Θ|x ≈ 0.2 |X | in practice, so the re-
alistic runtime will be on the order of |x| |T | |X |. Furthermore, we can speed
up the search procedure in an implementation of our method by keeping track
of the maximum value of the data consistency measure, Qmax, and skipping
the computation of the type score for a dialect θ̂ with P (x, θ̂) < Qmax, since
T (x, θ̂) ∈ [0, 1] and therefore such a dialect will not improve Qmax.

12 G.J.J. van den Burg, A. Nazábal, C. Sutton

5 Experiments

In this section we present the results of an extensive comparison study per-
formed to evaluate our proposed method and existing alternatives. Since vari-
ability in CSV files is quite high and the number of potential CSV issues is
large, an extensive study is necessary to thoroughly evaluate the robustness of
each method. Moreover, since different groups of users apply different formats,
it is important to consider more than one source of CSV files. In this section
we present the details of two corpora of CSV files, describe how ground truth
was obtained, and give brief descriptions of existing methods. Subsequently
we present results of the comparison study that evaluates detection accuracy,
runtime, and failure modes of the methods.

The method presented above was created using a development set of CSV
files from two different corpora.8 The experimental results below are based on
an independent test set that was unknown to the authors during the develop-
ment of the method. This split aims to avoid overfitting and provide a proper
estimate of the accuracy of our method. To make our work transparent and
reproducible, we release the full code and data set annotations through an
online repository.9

5.1 Data

Data was collected from two sources: the UK government’s open data portal
(UKdata; data.gov.uk) and GitHub (github.com). These represent different
groups of users (government employees vs. programmers) and we expect to
find differences in both the format and the type of content of the CSV files.
The CSV files in these corpora are considered to be representative for CSV
files encountered in the real-world: data scientists often work with open data
sources similar to the UKdata corpus, and often share data on platforms such
as Github.com. Moreover, Github is considered a good source of messy CSV
files, as the service places no restrictions on the format of CSV files that can
be uploaded. Data was collected by web scraping in the period of May/June
2018. A development set was randomly sampled, with 3776 files from UKdata
and 4536 files from GitHub. These were used to develop and fine-tune the
consistency measure presented above, and in particular were used to develop
the type detection engine.

An independent test set was sampled with 5000 files from each source. Dur-
ing development we noticed that the GitHub corpus often contained multiple
files from the same code repository. Because these files usually have the same
structure and dialect, they decrease the variability in the data. Therefore, a

8 We refer to a “development set” instead of the more commonly used term “training set”
because there is no explicit training of parameters in our method.

9 See: https://github.com/alan-turing-institute/CSV_Wrangling. A reference imple-
mentation of our method is available at: https://github.com/alan-turing-institute/
CleverCSV.

data.gov.uk
github.com
https://github.com/alan-turing-institute/CSV_Wrangling
https://github.com/alan-turing-institute/CleverCSV
https://github.com/alan-turing-institute/CleverCSV

Wrangling Messy CSV Files by Detecting Row and Type Patterns 13

limit of one CSV file per GitHub repository was put in place for the test set.
Thus we expect that the test set has greater variability and difficulty than
the development set. Furthermore, repositories that were used for the devel-
opment set were not used for the test set, ensuring independence between the
two. Unfortunately a similar restriction could not be placed on the files from
the UK data portal. It is worth emphasizing that the test set was not used in
any way during the development of the method.

5.2 Ground Truth

To evaluate the detection method, ground truth for the dialect of the CSV
files is needed. This was created through both automated and manual ways.
The automated method is based on very strict functional tests that allow
only simple CSV files with elementary cell contents. These automatic tests are
sufficient to accurately determine the dialect of about a third of the CSV files,
the remaining files were labelled manually. Files that could not reasonably be
considered CSV files were removed from the test set (i.e. HTML, XML, or
JSON files, or text files without tabular data). The same holds for files for
which no objective ground truth could be established, such as files formatted
similarly to the example in Figure 1(c). After filtering out these cases the
test set contained 4386 files from GitHub.com and 4969 files from the UK
government open data portal.

5.3 Alternatives

Since the dialect detection problem has not received much consideration in the
literature, there are only a few alternative methods to compare to. We briefly
present them here.

5.3.1 Python Sniffer

Python’s built-in CSV module contains a so-called “Dialect Sniffer” that auto-
matically detects the dialect of the file.10 There are two methods used to detect
the dialect. The first method is used when quote characters are present in the
file and counts adjacent occurrence of a quote character and another character
(the potential delimiter) and selects the pair that occurs most frequently. The
second method is used when there are no quote characters in the file. In this
case a frequency table is constructed that indicates how often a potential de-
limiter occurs and in how many rows (i.e. comma occurred x times in y rows).
The character that most often matches the expected frequency is considered
the delimiter, and a fallback list of preferred delimiters is used when a tie
occurs. The method also tries to detect whether or not double quoting is used

10 The dialect sniffer was developed by Clifford Wells for his Python-DSV package (Wells,
2002) and was incorporated into Python version 2.3.

14 G.J.J. van den Burg, A. Nazábal, C. Sutton

within cells using a regular expression. During our research we found that this
regular expression can run into “catastrophic backtracking” for certain CSV
files. Therefore we place a timeout of two minutes on this detection method
(normal operation never takes this long, so this restriction only captures this
specific failure case). This method also detects when whitespace following the
delimiter can be stripped. We do not include this in our method because the
CSV specification states, “Spaces are considered part of a field and should not
be ignored” (Shafranovich, 2005).

5.3.2 HypoParsr

HypoParsr (Döhmen et al., 2017) is the first dedicated CSV parser that takes
the problem of dialect detection and messy CSV files into account.11 The
method uses a hierarchy of possible parser configurations and a set of heuristics
to try to determine which configuration gives the best result. Unfortunately
it is not possible to use the HypoParsr package to detect the dialect without
running the full search that also includes header, table, and data type detec-
tion. Therefore, we run the complete program and extract the dialect from the
outcome. However, this means that both the running time and any potential
failure of the method are affected by subsequent parsing steps. This should be
kept in mind when reviewing the results. As the method can be quite slow,
we add a timeout of 10 minutes per file. Finally, the quote character in the
dialect is not always reported faithfully in the final parsing result, since the
underlying parser can strip quote characters automatically. We developed our
own method to check what quote character was actually used during parsing.

5.3.3 Wrangler Suitability Score

In Guo et al. (2011) a table suitability metric is presented that balances con-
sistency of cell types against the number of empty cells and cells with potential
delimiters in them. We call this method “Suitability” in the tables. This can
be used to detect the dialect of CSV files by selecting the dialect that does
best on this metric. The suitability metric uses the concept of column type
homogeneity, i.e. the sum of squares of the proportions of each data type in a
column. Since the exact type detection method used in the paper is not avail-
able, we use our type detection method instead. The set of potential dialects
is constructed in the same way as for our method, with the exception that the
list of potential delimiters from Guo et al. (2011) is used, i.e. D = {,, :, |, \t},
and pruning of the search space is not applied as this is considered a feature
of our method.

11 An R package for HypoParsr exists, but this was removed from the R package repository.
We nonetheless include the method in our experiments using the last available version.

Wrangling Messy CSV Files by Detecting Row and Type Patterns 15

Proposed

Property HypoParsr Sniffer Suitability Pattern Type No Tie Full

Delimiter 87.48 86.82 65.41 92.61 88.33 91.38 94.92
Quotechar 82.90 92.36 44.60 95.23 90.10 93.80 97.36
Escapechar 87.96 94.37 74.85 97.95 96.26 95.44 99.25
Overall 80.60 85.45 38.19 90.99 83.61 90.61 93.75

(a) GitHub corpus

Proposed

Property HypoParsr Sniffer Suitability Pattern Type No Tie Full

Delimiter 97.97 91.89 80.20 99.70 93.80 99.26 99.82
Quotechar 90.56 92.21 26.34 99.46 89.56 99.13 99.70
Escapechar 98.05 98.79 82.61 100.00 97.67 99.42 99.98
Overall 90.44 90.84 25.32 99.40 87.18 99.11 99.68

(b) UKdata corpus

Table 1 Accuracy (in %) of dialect detection for different methods on both corpora. Fail-
ure of a detection method is interpreted as an incorrect detection. “Pattern” and “Type”
respectively indicate detection using only the pattern score or only the type score. “No Tie”
indicates our method without tie-breaking.

5.3.4 Variations

In addition to our complete data consistency measure, we also consider varia-
tions to investigate the effect of each component. Thus, we include a method
that only uses the pattern score and one that only uses the type score. We
also include a variation that does not use tie-breaking.

5.4 Results

The methods are evaluated on the accuracy of the full dialect as well as on the
accuracy of each component of the dialect. The performance on non-standard
(messy) CSV files is evaluated as well as the runtime of each method. Finally,
we investigate the failure cases of the methods.

5.4.1 Detection Accuracy

The accuracy of dialect detection is shown in Tables 1(a) and 1(b) respectively
for the GitHub and UKdata corpora. We see that for both corpora and for
all properties our full data consistency method outperforms all alternatives,
with an exception for detecting the escape character in the UKdata corpus,
where the pattern-only score function yields a marginally higher accuracy. It
is furthermore apparent that the GitHub corpus of CSV files is more difficult
than the UKdata corpus. This is reflected in the number of dialects observed
in these corpora: 8 different dialects were found in the UKdata corpus vs.
33 in the GitHub corpus. We postulate that this difference is due to the na-

16 G.J.J. van den Burg, A. Nazábal, C. Sutton

Proposed

HypoParsr Sniffer Suitability Pattern Type No Tie Full

Standard (3502) 85.75 90.89 44.12 93.15 86.26 93.46 95.80
Messy (884) 60.18 63.91 14.71 82.47 73.08 79.30 85.63
Total (4386) 80.60 85.45 38.19 90.99 83.61 90.61 93.75

(a) GitHub corpus

Proposed

HypoParsr Sniffer Suitability Pattern Type No Tie Full

Standard (4938) 90.46 90.91 25.05 99.43 87.30 99.15 99.72
Messy (31) 87.10 80.65 67.74 93.55 67.74 93.55 93.55
Total (4969) 90.44 90.84 25.32 99.40 87.18 99.11 99.68

(b) UKdata corpus

Table 2 Accuracy (in %) of dialect detection for different methods on both corpora sepa-
rated by standard and messy CSV files. The numbers in parentheses represent the number of
files in each category. Failure of a detection method is interpreted as an incorrect detection.

ture of the creators of these files. CSV files from the UK government open
data portal are often created using spreadsheet applications and are therefore
more likely to adhere to the CSV format (Shafranovich, 2005). On the other
hand, the creators of files in the GitHub corpus are more likely to use non-
standard or custom-made tools for creating CSV files and may therefore use
different formatting conventions. Even though the files in the UKdata corpus
can be considered more “regular” our method achieves a considerable increase
in detection accuracy over standard approaches. The low accuracy of the table
suitability metric from (Guo et al., 2011) shows that this is not an appropriate
way to detect the dialect of CSV files.

The pattern score is almost as good as the full consistency measure, which
confirms our earlier statement that it is the main driver of the method. How-
ever it is clear that the type score brings further improvement of the accuracy
and that the type score alone does not suffice to accurately detect the dialect.
The variant of our method that does not use tie-breaking yields a lower overall
accuracy on both corpora, indicating the benefit of tie-breaking in our method.

5.4.2 Messy CSV Files

By separating the files into those that follow the CSV standard and those
that do not, we can further illustrate how our method improves over existing
methods. Files are considered “standard” when they use the comma as the
delimiter, use either no quotes or the quotation mark as the quote character,
and do not use an escape character (Shafranovich, 2005). Table 2 shows the
accuracy of dialect detection for standard and non-standard (messy) files. Our
method improves over existing methods on both types of files and achieves an
average improvement on messy files of 21.4% over the Python Sniffer.

Wrangling Messy CSV Files by Detecting Row and Type Patterns 17

HypoParsr Sniffer Suitability Pattern Type No Tie Full

10−6

10−4

10−2

100

102

104

R
u
n
ti

m
e

(s
)

GitHub
UKdata

Fig. 3 Runtime violin plots for both corpora. The whiskers show the minimum and maxi-
mum values and the dashed lines show the median. See the note on HypoParsr in the main
text.

5.4.3 Runtime

Figure 3 shows violin plots of the runtime for each method for both corpora.
Although HypoParsr is the slowest detection method, this is not completely
accurate because the reported runtime is the time needed for the entire pars-
ing process instead of only the dialect detection. The Python dialect sniffer
is the fastest method, which can most likely be attributed to its simplicity in
comparison to the other methods. Finally, all variations of our method have
similar runtime characteristics and slightly outperform the Wrangler suitabil-
ity metric. We note that our method has not been explicitly optimised for
speed, and there are implementation improvements that can be made in this
respect. However, the mean of the computation time for our method lies well
below one second, which is acceptable in practice.

5.4.4 Failure

Table 3 investigates the failure cases of the methods and shows the percent-
age of files where no result was obtained and where an incorrect result was
obtained. Note that a method can return no result due to a timeout or an
exception in the code (for the Python Sniffer or HypoParsr), or due to a tie
in the scoring measure (for the Wrangler suitability metric or our method).
When the correct dialect can not be detected, it is more desirable in practice
to return no result than to return an incorrect result, as the former gives a
signal that user intervention is needed whereas the latter does not. The table
shows that compared to existing methods the proposed method has the small-
est proportion of files in both failure cases. However, the proportion of files
where an incorrect result is returned is nonzero and future work may focus on
addressing this issue.

As Table 1(a) shows, an incorrect detection in our method occurs mostly
due to an incorrect detection of the delimiter. Analysing these failure cases
in more detail reveals that an incorrect detection occurred mostly because
our method predicted the space instead of the comma as the delimiter, due
to regular patterns of whitespace occurring in text cells. Other files had the

18 G.J.J. van den Burg, A. Nazábal, C. Sutton

Proposed

HypoParsr Sniffer Suitability Pattern Type No Tie Full

No Result 10.12 4.90 22.96 1.69 1.30 4.24 0.30
Incorrect 9.28 9.64 38.85 7.32 15.09 5.15 5.95
Correct 80.60 85.45 38.19 90.99 83.61 90.61 93.75

(a) GitHub corpus

Proposed

HypoParsr Sniffer Suitability Pattern Type No Tie Full

No Result 1.85 1.21 16.72 0.00 0.04 0.56 0.00
Incorrect 7.71 7.95 57.96 0.60 12.78 0.32 0.32
Correct 90.44 90.84 25.32 99.40 87.18 99.11 99.68

(b) UKdata corpus

Table 3 Percentage of files where the methods returned no result, an incorrect result, or
the correct result for dialect detection. In practice it is preferable to return no result instead
of an incorrect result to signal the need for user intervention.

comma as the true delimiter, but had only one column of data. In these cases
the true comma delimiter could be deduced by the human annotator from a
header or because certain cells that contained the comma were quoted, but
this type of reasoning is not captured by the data consistency measure. In
other failure cases the pattern score predicted the correct delimiter, but the
type score gave a low value, resulting in a low value of the data consistency
measure. Some of these failure cases can certainly be addressed by improving
the type detection procedure.

6 Discussion

A major challenge for today’s data scientists is the inordinate amount of time
spent on preparing data for analysis. One of the difficulties they face is im-
porting data from messy CSV files that usually require manual inspection and
reformatting before the data can be loaded from the file. In this paper we
have presented a method for automatic dialect detection of CSV files that
achieves high accuracy on a large corpus of real-world examples, and consid-
erably improves on the state of the art for messy CSV files. This represents
an important step toward automatically loading structured tabular data from
messy sources. Thus, there is significant potential for implementation of our
method in various software packages and programming languages, and it could
benefit existing tools for data wrangling such as FlashExtract (Le and Gul-
wani, 2014), Trifacta/Wrangler (Kandel et al., 2011), and Wrattler (Petricek
et al., 2018). This will enable data scientists to spend less time on mundane
data wrangling issues and more time on extracting valuable knowledge from
their data.

Wrangling Messy CSV Files by Detecting Row and Type Patterns 19

The proposed data consistency measure is inspired by the way a human
analyst would solve dialect detection. The consistency measure emphasizes a
regular pattern of cells in the rows and favors dialects that yield a greater
proportion of cells with identifiable data types. While we apply the consis-
tency measure only to CSV dialect detection in this paper, it is likely to have
applications outside this domain. For instance, it could be used for identifying
unstructured tables in HTML documents or free text, or for locating the tables
within CSV or spreadsheet files. The idea of mimicking the approach that a
human takes could be used for other problems in data wrangling. Finally, our
framework of a formatter that converts tabular data to a file using a vector of
parameters can be applied to other data formats (e.g. binary files).

Although our method achieves high detection accuracy on both datasets,
it does not achieve perfect accuracy on messy CSV files. On these files we
improve the state of the art by 21.4%, but our method fails to accurately
detect the dialect on 14% of messy files. This is indicative of the difficulty of
the dialect detection task: the many variations of CSV files make it hard to
develop a method that works well in general. A weakness of our method is
that it can fail when a CSV file contains many cells of an unknown type, or
when an incorrect dialect yields a comparable pattern score but a higher type
score than the correct dialect. Since the type detection associates a known
type with only 91.6% of cells on average, some of the failures of our method
can be addressed by expanding the set of data types. For example, fields with
a list of numbers surrounded by [and] can confuse the type detection when
the comma is used within this list, as do columns of MAC addresses due
to the presence of the : character. Moreover, single-column files can cause
confusion, especially when the column consists of natural text that includes
spaces. This could be addressed by designing a pre-test based only on the type
score that specifically identifies single-column files. Finally, single-row files
are often misidentified due to the presence of multiple potential delimiters
and the lack of sufficient information for the pattern score. These cases are
straightforward to detect and refer back to the user for manual inspection. We
consider these improvements topics for future research.

Another topic for future research is the further pruning of the set of po-
tential dialects to remove false positives. One possibility would be to use co-
occurrence of characters similar to the Python Sniffer method to eliminate
incorrect dialects. This was not included in the current work because the co-
occurrence method of Sniffer often fails. Several opportunities exist for speed-
ing up our method, including pruning the search space of parameters more
agressively, and simplifying the type detection method.

Acknowledgements

The authors would like to acknowledge the funding provided by the UK Gov-
ernment’s Defence & Security Programme in support of the Alan Turing In-
stitute. The authors thank Chris Williams for useful discussions.

20 G.J.J. van den Burg, A. Nazábal, C. Sutton

References

Arnold VI (2003) Catastrophe Theory. Springer Science & Business Media
Codd EF (1970) A relational model of data for large shared data banks. Communications

of the ACM 13(6):377–387
Crockford D (2006) The application/json media type for Javascript Object Notation (JSON).

Tech. Rep. RFC 4627, Internet Requests for Comments
Crowdflower (2016) Data science report. URL visit.figure-eight.com/

data-science-report.html, accessed 2018-11-19
Dasu T, Johnson T (2003) Exploratory data mining and data cleaning, vol 479. John Wiley

& Sons
Döhmen T, Mühleisen H, Boncz P (2017) Multi-hypothesis CSV parsing. In: Proceedings of

the 29th International Conference on Scientific and Statistical Database Management,
ACM, pp 16:1–16:12

Eberius J, Werner C, Thiele M, Braunschweig K, Dannecker L, Lehner W (2013) DeExceler-
ator: a framework for extracting relational data from partially structured documents. In:
Proceedings of the 22nd ACM International Conference on Information & Knowledge
Management, ACM, pp 2477–2480

Evans C (2001) YAML draft 0.1. URL yaml.org, accessed 2018-11-19
Fisher K, Walker D, Zhu KQ, White P (2008) From dirt to shovels: fully automatic tool

generation from ad hoc data. In: ACM SIGPLAN Notices, ACM, vol 43, pp 421–434
Frictionless Data (2017) CSV dialect specification. URL frictionlessdata.io/specs/

csv-dialect, accessed 2018-11-19
Guo PJ, Kandel S, Hellerstein JM, Heer J (2011) Proactive wrangling: Mixed-initiative end-

user programming of data transformation scripts. In: Proceedings of the 24th annual
ACM Symposium on User Interface Software and Technology, ACM, pp 65–74

Kaggle (2017) The state of data science & machine learning. URL www.kaggle.com/surveys/
2017, accessed 2018-09-27

Kandel S, Paepcke A, Hellerstein J, Heer J (2011) Wrangler: Interactive visual specification
of data transformation scripts. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM, pp 3363–3372

Kleene SC (1956) Representation of events in nerve nets and finite automata. In: Shannon
CE, McCarthy J (eds) Automata Studies, Princeton University Press

Koci E, Thiele M, Romero Moral Ó, Lehner W (2016) A machine learning approach for lay-
out inference in spreadsheets. In: IC3K 2016: Proceedings of the 8th International Joint
Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Manage-
ment: volume 1: KDIR, pp 77–88

Le V, Gulwani S (2014) FlashExtract: a framework for data extraction by examples. In:
ACM SIGPLAN Notices, ACM, vol 49, pp 542–553

Lohr S (2014) For big-data scientists, “janitor work” is key hurdle to in-
sights. The New York Times URL www.nytimes.com/2014/08/18/technology/
for-big-data-scientists-hurdle-to-insights-is-janitor-work.html, accessed
2018-11-22

Mitlöhner J, Neumaier S, Umbrich J, Polleres A (2016) Characteristics of open data CSV
files. In: 2nd International Conference on Open and Big Data (OBD), pp 72–79

Ng HT, Lim CY, Koo JLT (1999) Learning to recognize tables in free text. In: Proceedings
of the 37th annual meeting of the Association for Computational Linguistics, ACL, pp
443–450

Petricek T, Geddes J, Sutton C (2018) Wrattler: Reproducible, live and polyglot notebooks.
In: 10th USENIX Workshop on the Theory and Practice of Provenance (TaPP 2018)

Pinto D, McCallum A, Wei X, Croft WB (2003) Table extraction using conditional random
fields. In: Proceedings of the 26th annual international ACM SIGIR Conference on
Research and Development in Information Retrieval, ACM, pp 235–242

Raymond ES (2003) The art of Unix programming. Addison-Wesley Professional
Rovegno J, Fenner M (2015) CSVY: YAML frontmatter for CSV file format. URL csvy.org,

accessed 2018-11-19

visit.figure-eight.com/data-science-report.html
visit.figure-eight.com/data-science-report.html
yaml.org
frictionlessdata.io/specs/csv-dialect
frictionlessdata.io/specs/csv-dialect
www.kaggle.com/surveys/2017
www.kaggle.com/surveys/2017
www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
csvy.org

Wrangling Messy CSV Files by Detecting Row and Type Patterns 21

Shafranovich Y (2005) Common format and MIME type for comma-separated values (CSV)
files. Tech. Rep. RFC 4180, Internet Requests for Comments

Sutton C, Hobson T, Geddes J, Caruana R (2018) Data Diff: Interpretable, executable
summaries of changes in distributions for data wrangling. In: Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ACM,
pp 2279–2288

Tennison J (2016) CSV on the web: A primer. Tech. rep., W3C
Tennison J, Kellogg G (2015) Metadata vocabulary for tabular data. Tech. rep., W3C
The Unicode Consortium (2018) The Unicode Standard, Version 11.0.0
Wells C (2002) Python-DSV. URL python-dsv.sourceforge.net, accessed 2018-11-08
Wickham H (2014) Tidy data. Journal of Statistical Software 59(10):1–23

A Data Type Detection

As mentioned in the main text, we use a regular expression based type detection engine.
Below is a brief overview of the different types that we consider and the detection method
we use for that type. The order of the types corresponds to the order in which we evaluate
the type tests, and we stop when a matching type is found. The complete code is available
in an online repository.12

Empty Strings

Empty strings are considered a known type.

URLs and Email Addresses

For this we use two separate regular expressions.

Numbers

We consider two different regular expressions for numbers. First, we consider numbers that
use “digit grouping”, i.e. numbers that use a period or comma to separate groups of thou-
sands. In this case we allow numbers with a comma or period as thousands separator and
allow for using a comma or period as radix point, respectively. Numbers in this form can
not have E-notation, but can have a leading sign symbol. The second regular expression
captures the numbers that do not use digit grouping. These numbers can have a leading
sign symbol (+ or -), use a comma or period as radix point, and can use E-notation (i.e.
123e10). The exponent in the E-notation can have a sign symbol as well.

Time

Times are allowed in HH:MM:SS, HH:MM, and H:MM format. The AM/PM quantifiers are not
included.

Percentage

This corresponds to a number combined with the % symbol.

12 See: https://github.com/alan-turing-institute/CSV_Wrangling.

python-dsv.sourceforge.net
https://github.com/alan-turing-institute/CSV_Wrangling

22 G.J.J. van den Burg, A. Nazábal, C. Sutton

Currency

A currency value is a number preceded by a symbol from the Unicode Sc category (The
Unicode Consortium, 2018).

Alphanumeric

An alphanumeric string can follow two alternatives. The first alternative consists of first
one or more number characters, then one or more letter characters, and then zero or more
numbers, letters, or special characters. An example of this is the string 3 degrees. The
second alternative first has one or more letter characters and then allows for zero or more
numbers, letters, or special characters. An example of this is the string NW1 2DB. In both
alternatives the allowed special characters are space, period, exclamation and question mark,
and parentheses, including their international variants.

N/A

While nan or NaN are accepted in the alphanumeric test, we add here a separate test that
considers n/a and N/A.

Dates

Dates are strings that are not numbers and that belong to one of forty different date formats.
These date formats allow for the formats (YY)YYx(M)Mx(D)D, (D)Dx(M)Mx(YY)YY,
(M)Mx(D)Dx(YY)YY where x is a separator (dash, period, or space) and parts within paren-
theses can optionally be omitted. Additionally, the Chinese/Japanese date format and the
Korean date format are included.

Combined date and time

These are formats for joint date and time descriptions. For these formats we consider
<date> <time> and <date>T<time> as well as those with a time zone offset appended.

B Algorithm Details

B.1 Parser

The code we use for our CSV parser borrows heavily from the CSV parser in the Python
standard library, but differs in a few small but significant ways. First, our parser only
interprets the escape character if it proceeds the delimiter, quote character, or itself. In any
other case the escape character serves no purpose and is treated as any other character and
is not dropped. Second, our parser only strips quotes from cells if they surround the entire
cell, not if they occur within cells. This makes the parser more robust against misspecified
quote characters. Finally, when we are in a quoted cell we automatically detect double
quoting by looking ahead whenever we detect a quote, and checking if the next character is
also a quote character. This enables us to drop double quoting from our dialect and only
marginally affects the complexity of the code.

Wrangling Messy CSV Files by Detecting Row and Type Patterns 23

B.2 Row Patterns

The full description of how row patterns are constructed is as follows:

1. Create an empty string s.
2. Iterate over the characters of the CSV file x,

(a) If the character is a carriage return or newline, append R to s.
(b) If the character is the delimiter θd, append D to s.
(c) If the character is the quote character θq , append Q to s.
(d) If the character is the escape character θe, treat the next character as a normal

character if it is the delimiter, quote character, or escape character and append C
to s. If is not such a character, append CC.

(e) For any other character, append C to s.
3. Iterate over the characters of the string s,

(a) If the character is Q, mark the current position as the start or end of a quoted
segment unless the next character is also Q (i.e. double quotes).

(b) Replace all quoted segments by C.
4. Fill in empty cells by:

(a) Replacing all occurrences of DD in s by DCD.
(b) Replacing all occurrences of DR in s by DCR.
(c) Replacing all occurrences of RD in s by RCD.
(d) Inserting C at the start of s if it begins with D.
(e) Appending C at the end of s if it ends with D.

5. Reduce consecutive occurrences of C to a single C.
6. Strip a trailing R from s if present.
7. Split s on R. The resulting substrings are the row patterns.

	Introduction
	Related Work
	Problem Statement
	A Consistency Measure for Dialect Detection
	Experiments
	Discussion
	Data Type Detection
	Algorithm Details

